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Toulouse Cedex, France
2 Center for Polymer Physics and Department of Physics, Boston University, Boston, MA 02215,
USA

Received 25 June 2001, in final form 5 September 2001
Published 12 October 2001
Online at stacks.iop.org/JPhysA/34/9065

Abstract
Solutions to the random Fibonacci recurrence xn+1 = xn ± βxn−1 decrease
(increase) exponentially, xn ∼ exp(λn), for sufficiently small (large) β. In the
limits β → 0 and β → ∞, we expand the Lyapunov exponent λ(β) in powers
of β and β−1, respectively. For the classical case of β = 1 we obtain exact
non-perturbative results. In particular, an invariant measure associated with
Ricatti variable rn = xn+1/xn is shown to exhibit plateaux around all rational
r .

PACS numbers: 02.10.De, 02.50.-r, 31.15.Md, 72./15.Rn

1. Introduction

The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . . defined via Fn+1 = Fn + Fn−1 abound in
nature [1]3. For example, they govern the number of leaves, petals and seed grains in plants [2];
they also give the number of ancestors of a drone. The Fibonacci recurrence is the simplest
recurrence in which each number depends on the previous two and this perhaps explains why
the Fibonacci sequence is so ubiquitous. A natural stochastic modification of the Fibonacci
sequence is to allow both additions and subtractions. Random Fibonacci sequences are related
to many fields including condensed matter physics, dynamical systems, products of random
matrices [3] and continued fractions. Random recurrences also form a chapter of the larger
subject of iterated random functions [4].

The random Fibonacci recurrence xn+1 = xn ± xn−1 results in sequences which behave
erratically for small n. In the limit n → ∞, however, exponential growth occurs with
unit probability as was established by Furstenberg [5] in 1963. The large-n behaviour is
characterized by the Lyapunov exponent λ,

λ = lim
n→∞

ln |xn|
n

. (1)

3 http://www.ee.surrey.ac.uk/Personal/R.Knott/ gives a huge amount of information on Fibonacci numbers. A
mathematical periodical, the Fibonacci Quarterly, is entirely devoted to the subject.
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Exponential growth (decay) means that λ is positive (negative). For the random Fibonacci
recurrence where each ± sign is independent and either + or − with probability 1/2, the
Lyapunov exponent is λ = 0.123 975 59 . . . [6]. Exponential growth may seem unsurprising
but similar generalized random Fibonacci recurrence,

xn+1 = xn ± βxn−1 (2)

gives exponential growth only when the parameter β is sufficiently large, β > βs ≈ 0.702 58,
whereas for 0 < β < βs solutions decay exponentially [7]. The decay occurs even
though the expected values 〈xn〉 remain constant and the expected values of the higher-
integer moments 〈x2

n〉, 〈x3
n〉 etc grow exponentially. Indeed, from equation (2) one can

deduce 〈x2
n+1〉 = 〈x2

n〉 + β2〈x2
n−1〉, which implies 〈x2

n〉 ∼ [
1
2 + ( 1

4 + β2)1/2
]n

, and similarly for
higher moments [8]. Additionally, for β > 1/4 an interesting non-smooth dependence of the
Lyapunov exponent on the parameter β has been observed [7], suggesting that the curve λ(β) is
a fractal (it remains unclear whether this curve becomes genuinely smooth for sufficiently large
β). Similar non-smooth dependence on parameters has been reported for several disordered
systems [9, 10]. Also, numerical results [7] suggest the following asymptotic behaviours of
the Lyapunov exponent:

λ ≈
{− 1

2 β2 − 15
8 β4 when β → 0

1
2 ln β + 0.114

β
when β → ∞.

(3)

While understanding of the nature of the curve λ(β) might be a very difficult problem,
one should be able to carry out asymptotic expansions of the Lyapunov exponent using tools
developed in studies of one-dimensional disordered systems [9–16]. Indeed, equation (2)
admits the standard interpretation in terms of the one-dimensional (discretized) Schrödinger
equation. A peculiarity of the present problem is that the corresponding random Hamiltonian
is non-Hermitian. Non-Hermitian random Hamiltonians appear in various non-equilibrium
problems [17] and exhibit interesting behaviours [18–21]; for example, a delocalization
transition may occur even in one dimension. Fortunately, tools developed for Hermitian
problems can often be extended to the non-Hermitian case.

In the next section, we employ perturbation theory to expand the Lyapunov exponent in
powers of β. In particular, we show that in the β → 0 limit the second term is −1.75 × β4

rather than −1.875 × β4 (cf equation (3)) and compute many more terms. In section 3, we
use non-perturbative techniques to analyse the special β = 1 case. In section 4, we examine
random sequences with Gaussian, rather than binary, disorder. Finally, a few open questions
are discussed in the last section.

2. Perturbation theory

An old way of studying linear random recursions is to reduce them to random maps by
introducing the Riccati variable Rn = xn+1/xn. In the present case, equation (2) becomes

Rn = 1 ± β

Rn−1
. (4)

The Lyapunov exponent is given by

λ = lim
n→∞

1

n

n∑
j=1

ln Rj . (5)
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In the large-n limit, the probability distribution of Rn becomes independent of n. The
invariant distribution P(R, β) satisfies

P(R) = β

2(R − 1)2

[
P

(
β

R − 1

)
+ P

(
β

1 − R

)]
(6)

which immediately follows from the random map (4). The analysis of the functional
equation (6) often simplifies after transforming it into an integral equation

P(R, β) =
∫

dR′ P(R′, β)
1

2

[
δ

(
R − 1 +

β

R′

)
+ δ

(
R − 1 − β

R′

)]
. (7)

Once we know the invariant distribution P(R, β), we can employ equation (5) to compute the
Lyapunov exponent

λ(β) =
∫

dR P(R, β) ln R. (8)

Depending on the magnitude of β, the support of the invariant distribution P(R, β)

may be either finite or infinite. Let us assume the former. Then the extreme values satisfy
Rmin = 1 − β/Rmin and Rmax = 1 + β/Rmin, or

Rmin = 1 +
√

1 − 4β

2
Rmax = 3 − √

1 − 4β

2
. (9)

Thus, the support is finite when the strength of disorder satisfies β < 1/4. Furthermore, in
this case the support is not merely the interval [Rmin, Rmax] but rather a fractal set similar to
the Cantor set. Indeed, the map R → 1 ± β/R transforms the interval [Rmin, Rmax] into the
union of two subintervals, [Rmin, 1 − β/Rmax] and [1 + β/Rmax, Rmax]. Restricting the map to
these two subintervals shows that they are transformed into four subintervals. Proceeding in
the same manner ad infinitum we construct the fractal support of the invariant distribution. On
the other hand, the support is unbounded when β > 1/4. This suggests employing different
perturbation approaches for small and large β.

2.1. Weak-disorder expansion

When β < 1/4, it is desirable to compute λ(β) without explicit determination of the invariant
distribution P(R, β) which is a complicated singular function. The trick is to transform the
integral in the basic relation (8) into an integral which can be calculated perturbatively using
only the normalization requirement

∫
dR P(R) = 1. To this end we insert equation (7) into (8)

to yield

λ = 1

2

∫
dR P(R)

[
ln

(
1 − β

R

)
+ ln

(
1 +

β

R

)]
. (10)

Expanding the logarithms on the right-hand side of equation (10) we obtain

λ = −β2

2

∫
dR R−2P(R) − β4

4

∫
dR R−4P(R) + · · · .

In the limit β → 0, the interval [Rmin, Rmax] shrinks to R = 1. Hence, the first integral on the
right-hand side of the above equation approaches

∫
dR P(R) = 1. Thus λ = −β2/2 + O(β4)

and the first term of the expansion was indeed derived without using an explicit form of the
invariant distribution. However, the derivation of the next term is still impossible without
knowledge of the invariant distribution. To avoid this we transform equation (10) as we
transformed equation (8) into (10). Namely, we plug equation (7) into (10) to give

λ = 1

4

∫
dR P(R, β) L2(R, β) (11)
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where

L2(R, β) = ln

(
1 − β

1 − β

R

)
+ ln

(
1 − β

1 + β

R

)
+ ln

(
1 +

β

1 + β

R

)
+ ln

(
1 +

β

1 − β

R

)
.

Expanding the logarithms and inserting this expansion into equation (11) we obtain

λ = −β2

2

∫
dR P(R) − β4

4

∫
dR

(
6

R2
+ 1

)
P(R) + · · · .

The first integral is now identically equal to unity, while the second approaches seven in the
small-β limit. Therefore, λ = −β2/2−7β4/4+O(β6) is the two-term expansion. This shows
that the small-β expansion of equation (3) is slightly incorrect.

Repeating the above procedure k times, we recast equation (8) into

λ = 2−k

∫
dR P(R, β) Lk(R, β) (12)

where

Lk(R, β) =
∑

ε1,...,εk

ln [1; ε1β, 1, ε2β, . . . , εkβ, R]. (13)

The sum on the right-hand side of equation (13) is taken over all εj = ±1, and [1; a, b, . . .]
denotes the continued fraction 1+ a

b+··· . Expanding Lk(R, β) and plugging it into equation (12)
one finds the correct expansion of the Lyapunov exponent up to O(β2k). A few of these terms
can be computed by hand, and a little more can be done with the help of Mathematica. One
obtains

λ(β) = − 1
2 β2 − 7

4 β4 − 29
3 β6 − 555

8 β8 − 2843
5 β10 − 30 755

6 β12 + O(β14). (14)

The radius of convergence of this series appears to be equal to one-quarter as one could guess
from equations (9). Hence the Lyapunov exponent is an analytic function of β when |β| < 1/4.
Amusingly, the invariant distribution is a very singular function in this range of the parameter β.
The series (14) perfectly reproduces numerical results [7] (five representative digits), except for
the case β = 1/4, for which λnum ≈ −0.0429 and λtheor ≈ −0.0424. This slight discrepancy
is due to the fact that for β = 1/4 the generic term of the series decays as a power law in
contrast with an exponential decay for β < 1/4.

2.2. Strong-disorder expansion

In the large-β limit, the support of the invariant distribution P(R, β) is the whole real line.
The trick which has been employed in the case of weak disorder does not apply; i.e., we cannot
determine λ(β) without knowledge of the invariant distribution. It proves convenient to use
the modified Riccati variable rn = |xn+1/xn

√
β|. Then, equation (2) reduces to the random

map

rn =
∣∣∣∣ 1

rn−1
± δ

∣∣∣∣ δ ≡ β−1/2. (15)

Once we know the invariant distribution P(r, δ), we can compute the Lyapunov exponent via
equation (8), which now becomes

λ = 1
2 ln β +

∫
dr P (r) ln r. (16)
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The support of the invariant distribution is 0 � r < ∞. It proves convenient to define P(r)

for negative r via P(r) = P(−r), so the support is the entire real line. In present notations,
the functional equation (6) becomes

2P(r) = 1

(r + δ)2
P

(
1

r + δ

)
+

1

(r − δ)2
P

(
1

r − δ

)
. (17)

For δ = 0, this equation reduces to P(r) = r−2P(1/r), which has infinitely many solutions.
For δ > 0, however, the invariant distribution is unique. Thus taking the δ → 0 limit of the
invariant distribution P(r, δ) we shall obtain a unique appropriate solution. In this sense, we
are building a degenerate perturbation approach.

To determine P(r, δ), notice that equation (17) can be re-written as

P(r) = r−2P(1/r) + 1
2 D2

δ [r−2P(1/r)] (18)

where D2
δ is the discrete analogue of the second derivative, D2

δ F (r) = F(r + δ) − 2F(r) +
F(r − δ). Expanding the right-hand side of equation (18) into Taylor series and denoting
D = d

dr
we obtain

P(r) =
∞∑

k=0

δ2k

(2k)!
D2k[r−2P(1/r)]. (19)

The change of variable r → 1/r transforms equation (19) into

P(1/r) =
∞∑

k=0

δ2k

(2k)!
D2k[r2P(r)] (20)

where D = r2 d
dr

. If we now plug equation (20) into (19), we eliminate P(1/r) and thus arrive
at a closed equation for the invariant distribution P(r, δ):

P(r) =
∞∑

k=0

∞∑
l=0

δ2k+2l

(2k)!(2l)!
D2k{r−2D2l[r2P(r)]}. (21)

Equation (21) suggests seeking a solution P(r, δ) which can be expanded as a power series in
δ2:

P(r, δ) =
∞∑

j=0

δ2jPj (r). (22)

Plugging the series (22) into equation (21) one finds that the terms of unit order cancel. Equating
terms of order δ2 leads to the following second-order differential equation for P0(r):

DL1 P0(r) = 0 with L1 ≡ D + r2Dr2. (23)

Integrating once we arrive at L1P0 = 0, the integration constant being equal to zero to ensure
that P0(r) vanishes in the large-r limit. This can be re-written as

(1 + r4)P ′
0(r) + 2r3P0(r) = 0 (24)

whose normalized solution is

P0(r) = 2
√

π

�2(1/4)

1√
1 + r4

. (25)

Thus among infinitely many invariant distributions satisfying the duality relation P(r) =
r−2P(1/r) we have indeed selected the specific solution (25). Note that

∫
dr P0(r) ln r = 0

(this is actually valid for any function which obeys the duality relation). Therefore, the
anticipated contribution of unit order to the Lyapunov exponent (cf equation (16)) is actually
equal to zero.
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Similarly equating the terms of order δ4 one finds DL1P1 + DL3P0 = 0, where L3 is a
certain third-order differential operator. Integrating the above equation yields L1P1 +L3P0 = 0
(the integration constant is equal to zero to ensure that P1(r) vanishes in the large-r limit).
Recalling that L1P0 = 0 one can simplify the term L3P0. The final first-order differential
equation for P1(r) reads

L1P1(r) = (5 + r4)D3 + 2r3D2

12
P0(r). (26)

It is helpful to write P1(r) = P0(r) f1(r) and then exploit the identity L1[P0(r)f1(r)] ≡
(1 + r4)P0(r)f ′

1(r). Integrating the resulting equation yields

f1(r) = c1 + R1(r) R1(r) = r2(3r8 + 8r4 − 15)

6(r4 + 1)3
. (27)

The integration constant c1 can be found from the relation
∫

dr P1(r) = 0, which ensures that
the normalization condition

∫
dr P (r) = 1 holds. We obtain

c1 =
[

�(3/4)

�(1/4)

]2

. (28)

A direct computation gives
∫

dr P1(r) ln r = c1. Thus, in this order the contribution to the
Lyapunov exponent is equal to c1β

−1.
To determine Pj (r), we repeat the above procedure. Plugging (22) into (21), equating

terms of order δ2j+2 and integrating once the resulting equation yields

L1Pj (r) +
j∑

n=1

L2n+1Pj−n(r) = 0 (29)

where L2n+1 is the differential operator of order 2n + 1,

L2n+1 = 2

(2n + 2)!
D2n+1 +

n∑
k=0

2

(2k)!(2n − 2k + 2)!
D2kD2(n−k)+1r2.

Equations (29) can be solved recursively. Writing again Pj (r) = fj (r)P0(r), we find in the
second order

f2(r) = − 1
96 + c1f1(r) + R2(r),

R2(r) = r4(463 − 3640r4 + 2514r8 + 440r12 − 17r16)

24(r4 + 1)6
.

In the third order we have

f3(r) = 14 699
21 600 c1 − 1

96 f1(r) + c1f2(r) + R3(r)

R3(r) = r2 Q3(r)

15 120(r4 + 1)9

Q3(r) = 11 340r32 − 678 825r28 − 11 260 368r24 − 3619 377r20 + 356 871 272r16

−471 736 467r12 + 125 696 592r8 − 5587 155r4 + 11 340.

The constants were determined recursively after a long computation exploiting the
normalization requirements

∫
dr Pj (r) = 0 and the basic identity �(1 + z) = z�(z) for

the gamma function [22].
After inserting the above expressions for Pj (r) into equation (16), we arrive at the

expansion

λ(β) = 1
2 ln β +

∞∑
k=1

akβ
−k. (30)
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Figure 1. Pnum, which is obtained after 2 × 109 iterations of the map (15), and Ptheor , which is
the exact third-order expansion in β, are plotted for β = 10 (curves are indistinguishable). The
inset compares β(Pnum/P0 − 1) to β(Ptheor/P0 − 1) (thick curve). The Lyapunov exponent is
λnum ≈ λtheor ≈ 1.162 93.

One can in principle generate λ(β) to any order. The first few coefficients are

a1 = c1 = 0.114 236 645 261 1159 . . .

a2 = c2
1 + 1

144 = 0.019 994 455 649 58 . . .

a3 = 0.010 534 5239 . . .

a4 = 0.017 663 2096 . . . .

The coefficients ai have extremely complicated analytical expressions in terms of the �

function, which we have not been able to simplify (although it appears plausible that these
expressions can be reduced to polynomials of c1 with rational coefficients). The exact value for
a1 is in good agreement with the numerical estimate from [7]. From the first four coefficients,
one could guess that the radius of the convergence of series (30) is of order unity. However,
an apparent fractal structure of the curve λ(β) makes the above guess questionable. Even if
our strong disorder expansion is asymptotic, it is quite accurate as can be seen by comparison
of the four-term expansion (30) with numerical results. For β = 8, both give λ ≈ 1.054 33
whereas there is a slight discrepancy for β = 4 as λnum ≈ 0.723 09 and λtheor ≈ 0.723 19. In
figure 1, we compare analytical (third-order expansion) and numerical results for the invariant
distribution.

3. The golden mean case: β = 1

3.1. Generalities

We now focus on the particular case β = 1, which admits a non-perturbative treatment.
An ingenious construction of the invariant distribution P(r) and the invariant measure
ν([a, b]) = ∫ b

a
dr P (r) which involves a Stern–Brocot division of the real line has been

proposed by Viswanath [6]. In this section we first recall that construction [6] and the definition
of the Stern–Brocot division (for details, see [23] and also [1], which describes closely related
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Farey series). We then derive useful symmetry relations, which will lead to new quantitative
results concerning the invariant distribution P and the invariant measure ν.

The invariant distribution P(r) is symmetric, so we can limit ourselves to the half-line
r � 0. The Stern–Brocot division is defined as follows: start with the half-line I0 = [ 0

1 , 1
0 ]

and divide it into two intervals, [ 0
1 , 1

1 ] and [ 1
1 , 1

0 ]; then divide every first-generation interval
and continue in this manner. Generally, the mediant of an interval [p/q, p′/q ′] is obtained by
‘Farey addition’:

p

q
⊕ p′

q ′ = p + p′

q + q ′ . (31)

Thus, the interval [p/q, p′/q ′] is divided according to the rule[
p

q
,

p′

q ′

]
−→

[
p

q
,

p + p′

q + q ′

] ⋃ [
p + p′

q + q ′ ,
p′

q ′

]
. (32)

This generates 2n intervals at the nth generation, each interval I of the (n − 1)th generation
producing a left and a right child (LI and RI ) in the nth generation, according to equation (32).
For instance, [ 1

3 , 1
2 ] = RLLI0, and generally every Stern–Brocot interval I can be presented

as I = SI0, where S is the unique sequence of L and R. The length of S is denoted |S|.
Using this representation one can prove numerous properties of the Stern–Brocot division, for
example the assertion that for every Stern–Brocot interval [ p

q
,

p′
q ′ ], the identity p′q − pq ′ = 1

holds [23].
The invariance condition, i.e. equation (17) with δ = 1, can be re-written in terms of the

invariant measure to give

ν(a, b) = 1

2

{
ν

(
1

−1 + b
,

1

−1 + a

)
+ν

(
1

1 + b
,

1

1 + a

)}
.

Making use of the above equation, it is possible to express the measure of the left and right
children via the measure of the parent interval [6]:

ν(LSI0) =
{

(1 − τ) ν(SI0) if |S| is even

τ ν(SI0) if |S| is odd
(33)

and

ν(RSI0) =
{

τ ν(SI0) if |S| is even

(1 − τ) ν(SI0) if |S| is odd
(34)

where τ = (
√

5 − 1)/2 is the golden ratio (which is also the inverse growth constant of the
deterministic Fibonacci numbers, Fn ∼ τ−n).

We now turn to the derivation of symmetry relations, which will be helpful later. To
obtain the first one we take an arbitrary Stern–Brocot interval SI0 = [ p

q
,

p′
q ′ ] and notice that

the Stern–Brocot interval SRRI0 = [ p

q
+ 2,

p′
q ′ + 2] differs from SI0 by a mere translation.

Using equations (33), (34) one finds τ(1 − τ) ν(SI0) = ν(SRRI0), i.e.

ν

([
p

q
+ 2,

p′

q ′ + 2

])
= ρ ν

([
p

q
,

p′

q ′

])
(35)

with ρ = τ(1 − τ) = √
5 − 2.

Note that every interval with rational end points can be formed by joining appropriate
Stern–Brocot intervals. Hence equation (35) holds for any rational interval [ p

q
,

p′
q ′ ]. Since

rational numbers form a dense set on the line and ν(r) ≡ ν([0, r]) is a continuous (increasing)
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function, equation (35) applies to arbitrary intervals. Specializing to the interval [0, r], we
arrive at the first relation

ν ([2, r + 2]) = ρ ν(r) (36)

which can be also presented as

P(r + 2) = ρ P (r) for r � 0. (37)

The second symmetry relation,

P(2 − r) = P(r) for 0 � r � 2 (38)

expresses a mirror symmetry with respect to unity in the interval [0, 2]. To prove this result,
we take a Stern–Brocot interval SLI0 = [p/q, p′/q ′] ⊂ [0, 1] and notice that its symmetric
image [2−p′/q ′, 2−p/q] ⊂ [1, 2] is also a Stern–Brocot interval. Specifically, the symmetric
interval can be presented as S̄LRI0, where S̄ is the sequence obtained from S by exchanging
the L and R. It turns out that the interval and its symmetric image have the same invariant
measures

ν (SLI0) = ν(S̄LRI0). (39)

One then deduces equation (38) from (39), repeating the argument which has been employed
in deducing equation (37) from (35).

The proof of equation (39) can be accomplished by induction on the length. Suppose that
equation (39) holds for sequences S of length <n. Assuming n even and taking the right-hand
child of SLI0, we use equation (34) to yield

ν (RSLI0) = (1 − τ) ν (SLI0) (40)

ν(LS̄LRI0) = (1 − τ) ν(S̄LRI0). (41)

Since L = R̄ and the right-hand sides of the above equations are equal, we obtain ν (RSLI0) =
ν(R̄S̄LRI0), thus proving the induction step for even n and the right child. The three other
cases can be proved in a similar way.

3.2. Analytical results

In this section, we shall make use of the above symmetries to obtain quantitative results for the
invariant distribution P and the invariant measure ν. For instance, one can readily establish
extreme behaviours. From equations (33) and (34), one finds

ν(L2nI0) = ν(R2nI0) = ρn ν(I0) (42)

for any (positive) integer n. Clearly, L2nI0 = [0, 1
2n

] and R2nI0 = [2n, ∞]. Additionally,
ν(I0) = 1/2, which immediately follows from normalization. Thus equation (42) reduces to

ν

(
1

2n

)
= ν([2n, ∞]) = 1

2
ρn. (43)

From equation (43) we deduce the small-r behaviour,

ν(r) ∼ e−c/r with c = − 1
2 ln ρ (44)

and the large-r behaviour,
1
2 − ν(r) ∼ e−cr . (45)

Thus, the invariant measure ν(r) sharply vanishes when r → 0. Remarkably, similar
plateaux exist around all rational r . It is useful to demonstrate the existence of the plateau
in the proximity of a simple rational point, say r = 1/2. Take the family of intervals
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L2nRLI0 = [ 1
2 , 2n+1

4n+1 ]. The length of the nth interval is εn = [2(4n + 1)]−1. Exploiting
equations (33) and (34), we can compute the measure of these intervals and then examine how
the measure scales with length. We obtain

ν

([
1

2
,

2n + 1

4n + 1

])
= (1 − τ)2

2
ρn ∼ e−c/4εn . (46)

The continuity of the measure implies that the scaling holds for all small intervals, ν( 1
2 + ε) −

ν( 1
2 ) ∼ e−c/4ε .

Similarly, one can work out the proximity of an arbitrary rational number. One finds that
the measure of the interval [p/q, p/q + ε] (p and q are mutually prime integers) exhibits the
following behaviour:

ν

(
p

q
+ ε

)
− ν

(
p

q

)
∼ exp

(
− c

q2ε

)
(47)

with c = − 1
2 ln ρ as above. Similar asymptotics apply when we approach the rational point

from the left.
Turn now to the invariant distribution P(r). This function obeys a striking number of

intricate identities. (Note that it is a slight abuse of language to speak of P as a function: P is
a distribution rather than a function.) In the following, we shall be using equation (17), with
δ = 1, so we write it down for easy reference:

2P(r + 1) = 1

r2
P

(
1

r

)
+

1

(r + 2)2
P

(
1

r + 2

)
. (48)

Note that equation (48) at r + 2n can be written as

2P(r + 2n + 1) = Un(r) + Un+1(r) (49)

where we used the shorthand notation

Un(r) = 1

(r + 2n)2
P

(
1

r + 2n

)
. (50)

Changing n to n + 1 in equation (49) gives

2P(r + 2n + 3) = Un+1(r) + Un+2(r). (51)

Recalling that P(r + 2n + 3) − ρP (r + 2n + 1) = 0 (this is equation (37) at r + 2n), we
reduce (49), (51) to a recursion which involves only U :

Un+2(r) + (1 − ρ)Un+1(r) − ρUn(r) = 0. (52)

Since the variable r is mute, equation (52) is merely a linear recursion, which is
straightforwardly solved to find two independent solutions, (−1)n and ρn. Therefore, the
general solution is

1

(r + 2n)2
P

(
1

r + 2n

)
= A(r)(−1)n + B(r)ρn. (53)

In the n → ∞ limit, the left-hand side of equation (53) approaches zero. Thus, A(r) = 0. The
other coefficient B(r) is found by specializing equation (53) to n = 0. Equation (53) therefore
reduces to

1

(r + 2n)2
P

(
1

r + 2n

)
= ρn

r2
P

(
1

r

)
. (54)

One can derive a few more useful formulae relating P(r) at different points. Performing the
change of variable r → r−1, one transforms equation (54) into

P(r) = ρ−n

(1 + 2nr)2
P
( r

1 + 2nr

)
. (55)
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One can also take equation (54) at n = 1 and insert it into equation (48). The outcome reads

P(r + 1) = 1 + ρ

2r2
P

(
1

r

)
. (56)

Take now equation (56), change the variable r → r + 1 and use equation (37). This transforms
equation (56) into

P(r) =
(

1 + τ

1 + r

)2

P

(
1

1 + r

)
. (57)

We can take the same identity with (1 + r)−1 instead of r and insert it into the right-hand side
of equation (57), thus obtaining another identity. Proceeding in this manner, we arrive at a
series of identities

P(r) = (1 + τ)2m

(Fm + rFm−1)2
P

(
Fm−1 + rFm−2

Fm + rFm−1

)
. (58)

These identities apply for all integer m as well as the Fibonacci numbers Fm which are defined
for all integer m, for example F−4 = 2, F−3 = −1, F−2 = 1, F−1 = 0, F0 = 1.

Replacing r → 2 − r in identities (58) and using the symmetry relation (38) one obtains
another infinite series of identities. The simplest such identity (corresponding to m = 1) reads

P(r) =
(

1 + τ

3 − r

)2

P

(
1

3 − r

)
. (59)

The above identities together with the basic relation ν([a, b]) = ∫ b

a
dr P (r) can be used to re-

derive all previous results about the invariant measure, including the most interesting findings
about the plateaux.

3.3. Generating the invariant measure

Because of symmetries, it is sufficient to study ν(r) on the interval [0, 1]. To distinguish
the restricted version from the general case we change the notation: r → x, P → 1−ρ

4 f ,
ν → 1−ρ

4 N . The prefactor (1−ρ)/4 guarantees that the invariant measure N(x) = ∫ x

0 dy f (y)

obeys N(1) = 1. To see this, we exploit the normalization condition, 1 = ∫∞
−∞ drP (r):

2
∫ ∞

0
dr P (r) = 2

1 − ρ

∫ 2

0
dr P (r) = 4

1 − ρ

∫ 1

0
dr P (r).

The first identity above is obtained by using equation (37) and summing up the geometric series
while the last is an obvious consequence of equation (38). Thus we indeed obtain N(1) = 1
if we choose f (x) = 4

1−ρ
P (x).

Now let us integrate f (x)F (x) with any F(x) over intervals (0, 1/3), (1/3, 1/2), (1/2, 1).
We find ∫ 1/3

0
dx f F =

∫ 1

0

dx

(1 + 2x)2
f
( x

1 + 2x

)
F
( x

1 + 2x

)

= ρ

∫ 1

0
dx f (x) F

( x

1 + 2x

)
(60)

∫ 1/2

1/3
dx f F =

∫ 1

0

dx

(3 − x)2
f

(
1

3 − x

)
F

(
1

3 − x

)

= (1 + τ)−2
∫ 1

0
dx f (x) F

(
1

3 − x

)
(61)
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1/2
dx f F =

∫ 1

0

dx

(1 + x)2
f

(
1

1 + x

)
F

(
1

1 + x

)

= (1 + τ)−2
∫ 1

0
dx f (x) F

(
1

1 + x

)
. (62)

In deriving the first lines in the above formulae we have used the mappings x(1 + 2x)−1, (3 −
x)−1, (1 + x)−1 of the unit interval (0, 1) onto the intervals which appear on the left-hand side.
We then exploited equation (55) at n = 1, equation (59) and equation (57), respectively, to
obtain the second lines.

Summing up equations (60)–(62) leads to the identity∫ 1

0
dx f (x) F (x) =

∫ 1

0
dx f (x) T̂ [F(x)] (63)

where the linear operator T̂ acts on F according to

T̂ [F(x)] =
3∑

i=1

αiF (hi(x)) (64)

α1 = ρ α2 = α3 = (1 + τ)−2
3∑

i=1

αi = 1 (65)

h1(x) = x

1 + 2x
h2(x) = 1

3 − x
h3(x) = 1

1 + x
. (66)

These relations show that the distribution f can be generated by the following simple recursion
process. We take an arbitrary point x ∈ (0, 1] and assign a unit weight w(x) = 1. We then
define three new points and associated weights according to the rule

xi = hi(x) w(xi) = αiw(x) i = 1, 2, 3. (67)

Iterating n times, we obtain 3n different xi . The weights w(xi) of these points add up to unity
and w(x) converge (in the weak sense) to f (x). In figure 2, we plot the invariant measure
obtained after four and ten iterations.

The plateaux described by equation (47) are clearly visible in figure 2. The smaller
the denominator q, the wider is the associated plateau as predicted by equation (47). In a
pseudo-gap of f (associated with a plateau for N ), N(p/q) = {np/qτ }, where {·} denotes
the positive fractional part and np/q is a possibly negative integer. The values of N(p/q)

for a few small denominator fractions are presented in figure 2; they have been calculated
by using equations (63)–(66). Thus, a kind of ‘pseudo-gap labelling theorem’ [24] applies
here: for tight-binding Hamiltonians on 1D quasiperiodic chains associated with an irrational
number α (see [24] for a general formulation), this theorem states that the integrated density of
states (IDOS) displays plateaux (corresponding to the energy true gaps). In these plateaux, the
IDOS takes values precisely of the form {nα}. In one dimension, the IDOS is intimately related
to the invariant measure ν [16]. Therefore, it is not surprising that ν exhibits a similar behaviour.

We now show how to calculate the Lyapunov exponent from the restricted invariant
distribution f (x). Take the basic formula, λ = ∫

dr P (r) ln r , and perform the same operations
as we did for the normalization condition at the beginning of this section. We obtain

λ =
∫ 1

0
dx f (x) g(x) + µ

g(x) = 1 − ρ

2

∞∑
k=0

ρk ln

(
1 −

(
1 − x

2k + 1

)2
)
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(x
)

x

Figure 2. The invariant measure N(x) = ∫ x

0 dy f (y) obtained after four iterations (dotted curve
involving only 34 = 81 different xi ) and ten iterations (310 = 59 049 different xi ).

µ = (1 − ρ)

∞∑
k=0

ρk ln(2k + 1) = 0.293 204 911 37 . . . .

We then numerically compute λ via

λ = lim
n→∞

3n∑
i=1

w(xi)g(xi) + µ.

For instance, starting from x = 1 − τ , one reproduces ten digits of λ after only eight
iterations.

4. Gaussian random sequences

Invariant measures exhibited by the Fibonacci random sequences appear fractal for all strengths
of disorder. This is apparently caused by the discreteness of the disorder. Additionally, there
is a transition between weak disorder, manifested by an invariant measure whose support is
bounded, and strong disorder, characterized by an invariant measure with unbounded support.
This feature is seemingly caused by the boundness of the disorder. Hence, random sequences
with unbounded continuous disorder distributions provide a natural counterpart to random
sequences with binary disorder. As a specific example, we consider the Gaussian random
recurrence,

xn+1 = xn + βznxn−1 (68)

where zn are independent identically distributed random variables with Gaussian probability
density

G(z) = 1√
2π

e−z2/2. (69)

To analyse the Gaussian random recurrence, we again use the Riccati variable Rn =
xn+1/xn, which reduces equation (68) to the random map

Rn = 1 +
βzn

Rn−1
. (70)
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The invariant distribution P(R) satisfies

P(R) =
∫

dz G(z)

∫
dR′ P(R′)δ

(
R − 1 − βz

R′

)
(71)

which can be re-written as

P(R + 1) = 1√
2πβ2

∫
dR′ |R′| P(R′) e−R′2R2/2β2

. (72)

Note two general features of the invariant distribution which directly follow from equation (72).
One is a power-law large-R asymptotics,

P(R) ≈
√

2

π

βP (0)

R2
for R � β. (73)

Another unexpected feature is a weak logarithmic divergence at R = 1:

P(R) ≈ 2

π
P (0) ln

(
1

|R − 1|
)

for |R − 1| � β. (74)

Equation (74) follows from equations (72) and (73).
We now turn to a perturbative analysis. While for the Gaussian random recurrence there

appears to be no threshold separating weak and strong disorder, different approaches should
be implemented when β → 0 and β → ∞, respectively. In the former region, the regular
perturbation theory applies while in the latter region one needs a singular perturbation theory.

4.1. Weak disorder

Equation (70) shows that for weak disorder (β → 0) the magnitude of R − 1 is comparable to
β. This suggests rescaling the variable R and the invariant distribution P(R) according to

R = 1 + βr P (R) = β−1Q(r). (75)

The normalization condition
∫

dR P(R) = 1 now reads∫
dr Q(r) = 1. (76)

The governing equation (72) becomes

Q(r)

G(r)
=
∫ ∞

−∞
dr ′ |1 + βr ′| Q(r ′) e−r2(βr ′+β2r ′2/2). (77)

In the small-β limit, we simplify equation (77) to

Q(r)

G(r)
=
∫ ∞

−∞
dr ′ (1 + βr ′) Q(r ′) e−r2(βr ′+β2r ′2/2). (78)

The error caused by the above simplification is of order Q(−1/β). We shall see that it vanishes
as exp(−1/2β2) and therefore it can be ignored in perturbative analysis.

We are seeking a perturbative solution. The symmetry β ↔ −β suggests an expansion in
β2 rather than β:

Q(r) =
∞∑

n=0

β2nQn(r). (79)

We must also expand the exponent on the right-hand side of equation (77). This exponent is
the generating function of the Hermite polynomials Hn(r),

exp[−r2(x + x2/2)] =
∞∑

n=0

(−xr)n

n!
Hn(r) (80)
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where Hn(r) are defined via [22]

Hn(r) = er2/2

(
− d

dr

)n

e−r2/2. (81)

Thus, the Hermite polynomials make their appearance in the problem with non-Hermitian
Hamiltonian.

Inserting equations (79) and (80) into (78), we obtain

Qn(r)

G(r)
=

n∑
k=1

r2k−1

(2k)!
H2k+1(r)

∫
dr ′ (r ′)2k Qn−k(r

′). (82)

In deriving equation (82), we also used the recursion relation for the Hermite polynomials [22]:

Hn+1(r) = rHn(r) − nHn−1(r). (83)

Solving equation (82) recursively yields

Q0(r) = G(r)

Q1(r)

G(r)
= 1

2
rH3(r)

Q2(r)

G(r)
= 3

2
rH3(r) +

1

8
r3H5(r)

Q3(r)

G(r)
= 12 rH3(r) +

5

4
r3H5(r) +

1

48
r5H7(r)

Q4(r)

G(r)
= 7857

32
rH3(r) +

135

8
r3H5(r) +

7

16
r5H7(r) +

1

384
r7H9(r)

Q5(r)

G(r)
= 1362 843

256
rH3(r) +

48 675

128
r3H5(r) +

147

16
r5H7(r) +

3

32
r7H9(r) +

1

3840
r9H11(r)

etc. We shall use these results to compute the Lyapunov exponent. The basic formula (8) now
reads

λ =
∫ ∞

−∞
dr Q(r) ln |1 + βr|. (84)

Expanding the logarithm and the invariant distribution, equation (79), and recalling that
Q(r) = Q(−r), we obtain

λ = −
∞∑

n=1

β2n
n∑

k=1

1

k

∫ ∞

0
dr r2kQn−k(r). (85)

Inserting the above expressions for Qn (n = 0, . . . , 5) into equation (85), we obtain the
weak-disorder expansion:

λ(β) = − 1
2 β2 − 9

4 β4 − 22 β6 − 13 197
32 β8 − 2374 335

256 β10 − 118 392 093
512 β12 + O(β14). (86)

Interestingly, neither the R−2 asymptotics (73) nor the logarithmic singularity (74) appear
in the weak-disorder expansion. Both these behaviours are non-perturbative. For instance,
P(0), which appears on the right-hand sides of equations (73) and (74), scales as exp(−1/2β2);
i.e., the behaviours (73) and (74) are beyond the scope of perturbation techniques. Note also
that the observation of the logarithmic singularity (74) requires probing of a prohibitively tiny
region r ∼ exp[− exp(−1/2β2)].

The occurrence of non-perturbative corrections (of order exp(−1/2β2)) suggests that the
radius of convergence of the series (86) is equal to zero. This is (non-rigorously) confirmed by
the following approximate analysis of λ(β). First, we write Rn ≈ 1 + βzn, as the distribution
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of Rn−1 is strongly peaked at R = 1 for small β. Within this approximation, and using the
fact that the Gaussian distribution is an even function, we obtain

λ(β) ≈ 1
2

∫ ∞

−∞
dz G(z) ln |1 − β2z2| dz (87)

which reproduces exactly the first term of equation (86). Now, expanding equation (87) in
powers of β2 is likely to lead to the correct qualitative behaviour for the full general expansion.
The generic term,

−β2n

2n

∫ ∞

−∞
dz G(z) z2n = −β2n 2n−1

n
√

π
�

(
n +

1

2

)
grows faster than any exponential, ensuring that the radius of convergence is indeed zero. Of
course, we cannot exclude that for the actual expansion, subtle cancellations lead to a finite
radius of convergence. However, the occurrence of non-perturbative corrections, and concrete
ingredients of the argument presented above (mainly, the unboundness of the distribution G(z)

and the fact that the series ln(1 + x) has a finite radius of convergence) which seem to persist
in the general case, favour a zero radius of convergence and the asymptotic character of the
series (86). This is very different from the case of random Fibonacci sequences, where the
weak-disorder expansion has a finite radius of convergence and there was no trace of any
non-perturbative contribution.

4.2. Strong disorder

For β → ∞, we again use the properly normalized Riccati variable yn = xn+1/xn

√
β.

Equation (68) reduces to the random map

yn = zn

yn−1
+ δ δ ≡ β−1/2. (88)

The invariant distribution satisfies

P(y + δ) = 1√
2π

∫ ∞

−∞
dη |η| P(η) exp

{
−y2η2

2

}
(89)

and the Lyapunov exponent is given by equation (16) as in the Fibonacci case. Equation (89)
suggests seeking a perturbative solution. In the zeroth order, one might set δ = 0 in
equation (89). The corresponding invariant distribution P0(y) is an even function of y which
satisfies

P0(y) =
√

2

π

∫ ∞

0
dη η P0(η) exp

{
−y2η2

2

}
. (90)

Paradoxically, a (formal) solution to this equation,

P0(y) = A

|y| (91)

does not obey the normalization requirement. This indicates that the naive perturbation
approach does not work and one must develop a singular perturbation theory. One still
anticipates that P0(y) is given by equation (91) apart from the small and large scales, |y| ∼ δ

and |y| ∼ δ−1, which are implied by the random map (88). Treating these scales as cutoffs
allows us to normalize the solution (91) and to estimate the amplitude A ≈ (2 ln β)−1. One
can establish the existence of the cutoffs more rigorously. Using equations (89) and (91) one
estimates P(0) ∼ Aδ−1, in agreement with the existence of the small-scale cutoff y ∼ δ. The
large-scale cutoff already follows from equation (73), which now reads

P(y) →
√

2

π

P (0)

y2
for y � δ−1. (92)
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Note also that the deficiency of the naive perturbation approach is clear from the respective
random map, yn = zn/yn−1. Indeed, iterating the above map and taking the logarithm gives
ln yn = ∑

(−1)n−k ln zk . The central limit theorem now asserts that the scale of the limiting
distribution grows indefinitely with n, namely ln yn ∼ √

n. Thus for δ = 0 already the basic
assumption that yn approaches a limiting distribution which does not depend on n is incorrect.

We now present a computation of the zeroth-order contribution to the Lyapunov exponent
which does not require the knowledge of P0. Denote by 6 the zeroth-order contribution to the
Lyapunov exponent. We have

6 = 2
∫ ∞

0
dy P0(y) ln y

= 2

√
2

π

∫ ∞

0
dη η P0(η)

∫ ∞

0
dy ln y exp

{
−y2η2

2

}

= 2

√
2

π

∫ ∞

0
dη P0(η)

∫ ∞

0

dt√
2t

e−t ln

(√
2t

η

)

=
∫ ∞

0
dη P0(η)[8( 1

2 ) + ln 2 − 2 ln η]

= 1
2 [8( 1

2 ) + ln 2] − 6.

In the second line we used equation (90); this step is not really rigorous though we think the final
result is correct. The variable t which appears in the third line has been defined via t = y2η2/2;
in the fourth line we used the digamma (psi) function, 8(x) = �′(x)/�(x) [22]; in the last
line we used the normalization requirement and the definition of 6. The above equation yields
6, which can be simplified further by using the identity 8(1/2) = −γ − 2 ln 2, where γ is
the Euler constant. Finally,

6 = −γ + ln 2

4
= −0.317 590 711 365 . . . . (93)

Our numerical results suggest that the strong-disorder expansion involves powers of
(ln β)−1 rather than β−1:

λ(β) = 1
2 ln β + 6 +

∞∑
k=1

bk(ln β)−k. (94)

Of course, it is hardly possible to probe higher-order logarithmic terms numerically. However,
plotting λ − 1

2 ln β versus (ln β)−1 gives a fairly straight line for β > 104, with the slope
b1 ≈ 0.557, and a perfect fit to the above functional form, keeping a quadratic term in (ln β)−1,
with b2 ≈ −0.52 (see figure 3).

Extrapolating the quadratic fit to (ln β)−1 = 0 yields 6 ≈ −0.318, in good agreement
with the theoretical prediction (94). In contrast to the Fibonacci case, the curve of λ(β) appears
perfectly smooth, and is certainly not fractal.

Finally, we note that asymptotic methods [22] should in principle allow us to perform the
strong-disorder expansion more systematically.

5. Discussion

The rich behaviour exhibited by random Fibonacci numbers suggests avenues for further
investigation. For instance, how do we reconcile perturbative results in the large-β limit
with non-perturbative results for β = 1 ? This question is important as there appears to be
just a single threshold β = 1/4, and therefore β = 1 lies within the large-β domain. This
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Figure 3. We plot λ(β) for Gaussian random sequences. The upper inset compares −(λ(β) +
β2/2)/β4 = 9/4+22β2 + · · · obtained from the 10th- and 12th-order expansions in equation (86) to
the result of numerical simulations. The lower inset is a quadratic fit in (ln β)−1 (see equation (94))
of λ(β) − 1

2 ln β, for large β, leading to an extrapolated 6 ≈ −0.318, with b1 ≈ 0.557 and
b2 ≈ −0.52.

(This figure is in colour only in the electronic version)

suggests qualitatively similar behaviours, which is not the case. The major difference between
β = 1 and β → ∞ cases is manifested in extreme behaviours of the invariant measure.
In the former case, it exhibits exponential asymptotics, equations (44) and (45), while the
latter is characterized by power-law asymptotics, ν(r) ∼ r for r → 0 and 1

2 − ν(r) ∼ r−1

for r → ∞. More generally, our perturbative results are infinitely smooth, in a gross
disagreement with the behaviour for β = 1. Another (related) set of questions concerns
the curve λ(β): is it a fractal? Does it become genuinely smooth at least for sufficiently large
β?

One could ask for a more complete characterization of the growth (decay) of the random
Fibonacci numbers. A natural conjecture is xn ∼ eλn nω. For the neutrally stable recurrence,
xn+1 = xn ±βsxn−1 with βs ≈ 0.702 58 chosen so that λ(βs) = 0, the above conjecture would
imply the power-law behaviour xn ∼ nωs .

Finally, it would be very interesting to analyse random Fibonacci numbers for the critical
strength of disorder, β = 1/4. This strength of disorder appears a little more interesting than
β = 1: it is hard to see what distinguishes β = 1 from say β = 1.234 56, while the case of
β = 1/4 is certainly special as it separates the regions of weak and strong disorder.
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